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verted negative peaks. The region 4-7 ppm was still too con­
gested and hence 50% C6D6 was added to spread out the 
spectrum (Figure 1, bottom run). For further improvement, 
the 4.75 ppm HDO peak was moved upfield out of the range 
of overlap by warming the sample to 55 0C. As shown in Figure 
1 (top run), the resulting spectrum was a dramatic improve­
ment over the original (inset), and revealed almost all chemical 
shifts and coupling constants. This assignment is consistent 
with that of the trans opening of isomer I by guanine when 
compared with the cis and trans hydration products from iso­
mer I5 and was confirmed by showing that the 7-H doublet at 
5.23 ppm (see insert, Figure 1) moves downfield to 6.60 ppm 
JT,s = 9 Hz in the per-O-acetate derivative (acetic anhy-
dride-pyridine, room temperature 12 h). 

The point of attachment of the guanosine moiety was proved 
as follows. When measured in Me2SO-^ the 1H NMR spec­
trum of 1 showed a conspicuous doublet at 6.92 ppm (J = 8 Hz, 
N2-H of guanine), which collapsed to a singlet upon irradiation 
of the 10-proton at 5.93 ppm (overlapping with the l'-H) and 
disappeared upon addition of D2O. Such observations are only 
consistent with substitution of the N2 of guanine at the 10-
position of isomer I. The high resolution mass spectrum of the 
5',7-diacetate 2',3',8,9-diacetonide of 36,7 also indicated that 
substitution had occurred through the N2 of guanine. An ion 
at m/e 342.1152 (1.9%, C22H16NO3 = 342.1129) corresponds 
to cleavage between the C-2 and N2 positions of guanine and 
loss of acetone from the BP moiety. An additional loss of acetic 
acid from this ion was also observed: m/e 282.0930 (4.5% 
C20H12NO = 282.0919). 

Current investigations are directed towards the absolute 
configurations of 1 and 3 and other derivatives formed with 
RNA and DNA during metabolism of BP.8 
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1,3-Dithietane 

Sir: 

Although derivatives of 1,3-dithietane (1) have been known 
for over 100 years,1 the parent compound has until now re­
mained unknown. We describe herein a simple synthesis of 1 
from readily available starting materials. We also report the 
preparation of the previously unknown S-oxides of 1, 1,3-di­
thietane 1-oxide (2), 1,3-dithietane 1,1-dioxide (3), cis- and 
trans- 1,3-dithietane 1,3-dioxide (4 and 5, respectively), and 
1,3-dithietane 1,1,3-trioxide (6), and the conversion in high 
yield of several of these compounds (3,4, 5, 6) to the previously 
described sulfene dimer, 1,3-dithietane 1,1,3,3-tetraoxide (7).2 

We have initiated a detailed investigation of the reactions and 
structural features of these interesting heterocycles. Novel 
structural features of two of the above compounds are de­
scribed in this communication while one aspect of the chem­
istry of 2, namely, its facile pyrolytic conversion into sulfine 
and thioformaldehyde, is reported elsewhere.3 

While bis(chloromethyl) sulfide fails to give monomeric 
product with sodium sulfide,4 presumably due to the high re­
activity of the former compound in displacement processes, 
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bis(chloromethyl) sulfoxide5 in the presence of the phase 
transfer catalyst "tricaprylylmethylammonium chloride" 
(General Mills "Aliquat 336") reacts rapidly and exother-
mically at room temperature with aqueous sodium sulfide af­
fording 2, mp 71-73.5 0C, in 36% yield6'7 (Scheme I). Re­
duction of 2 with excess 1 M tetrahydrofuran-borane (Al-
drich) at room temperature for 1 day gives 1, mp 105-106 0C, 
in 70% yield.7 Reoxidation of 1 with iodobenzene dichloride 
in acetonitrile containing H2180 and triethylamine8 affords 
2-18O (required for microwave studies3). Treatment of 2 at 
-20 0C with KMn04/MgS04 in acetone9 yields 3 (96%), mp 
141-143 0C.7 Oxidation of 2 with iodobenzene dichloride in 
aqueous pyridine at —30 0C or with metachloroperbenzoic acid 
in methylene chloride at 0 0C produces, respectively, a 3:1 or 
2:3 mixture of 47 (mp 260 0C dec) and 57 (mp 203-205 0C 
dec), readily separable by fractional recrystallization from 
dimethylformamide.10 Treatment of 3 in chloroform at 0 0C 
with peracetic acid gives 6, mp 231-234 0C in 90% yield.7 

Finally, exposure of 3, 4, 5, and 6 to excess peracetic acid at 
100 0C for several hours gives in 71-86% yield compound 7 
with spectral and physical properties in complete agreement 
with those previously reported for the sulfene dimer.2 Com­
pounds 1-7 are all colorless, nicely crystalline, sublimable 
solids. 

The structure of 2 has been determined by the isotopic 
substitution method from its microwave spectrum and the 
spectra of eight isotopic modifications (18O, 34So, 34S, 13C, 
d\-a, d\-t, ^3-aae, and d^).12 The ring is "puckered", the angle 
between the two CSC planes being 39.3 (2)°, with the oxygen 
equatorial as shown in 2a.13 Other structural parameters are: 

H 

2a 

r S0-O = 1.473 (3) A, r C-S0 = 1.81 (2) A, r C-S = 1.82 (2) 
A, r C-Ha = 1.13 (4) A, r C-He = 1.06 (2) A, /CS0C = 81.7 
(8)°, ZCSC = 81.1 (5)°,/SC0 = 91.2 (5)°, ZCS0O= 112.4 
(7)°, Z(H3CS0) - (CS0O) = 25.5 (14)°, and Z(H6CS0) -
(CS0O) = -99.3(24)°. A novel feature of the structure of 2 
is the short nonbonded S-S distance of 2.600 (7) A (the non-
bonded C-C distance is 2.37 (2) A). Since the S-O distance 
in 2 is normal (the S-O distances in cis- and trans-3-p-bro-
mophenylthietane 1-oxide are 1.482 (13) and 1.492 A, re­
spectively14) and 7 has been found to possess an even shorter 
S-S distance (see below), it seems unlikely that there is any 
substantial bonding between the sulfurs in 2.15 

If the ring of 1 were "puckered" as much as that of 2, its 
dipole moment would probably be about 1 D, and this coupled 
with its high vapor pressure at room temperature would result 
in a rich microwave spectrum. The fact that no microwave 
absorptions are observed for 1 suggests that its ring is equi­
librium planar, or very nearly so. 

The structure of 7 has been determined by x-ray diffraction 
methods with the following crystal data: C2H4O4S2, M = 
156.2; monoclinic, space group P2\/c; a = 5.582 (2), 6 = 5.759 
(2), c = 8.965 (4) A, /3 = 116.84 (3)°; ^measd = 2.01 g cm"3, 
Z = 2, rfcaiCd = 2.017 g cm"3; U = 257.1 (2) A3; one-half 
molecule in the asymmetric unit located about a center of 
symmetry; 1184 independent counter data were collected by 
the w-26 scan technique. The structure was determined by 
direct methods and refined by full-matrix least squares (C, O, 
S anisotropic; H isotropic) to a discrepancy factor Rx of 0.038. 
The four atom ring of 7 is planar16 and almost square with SCS 
and CSC angles of 91.5 (1)° and 88.5 (1)°, respectively. 
Particularly notable is the extremely short nonbonded S-S 
distance of 2.590 (1) A (to our knowledge, the shortest yet 

reported). Other pertinent structural features of 7 include: 
nonbonded C-C, 2.524 (4) A, S-O 1.433 (2) A,17 S-C 1.808 
(2) A17, C-H, 0.90 (3) A,17 ZOSO, 119.2 (1)°, ZHCH, 115 
(3)°,zOSC, 111.2 (I)0,17 and ZHCS, 112 (2)°.17'18 

We are actively investigating the chemical reactions of these 
intriguing lower homologues of 1,3,5-trithiane, with one ob­
jective being the synthesis of the theoretically interesting19 

molecule 2,4-dithiabicyclo[ 1.1.0]butane. 
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Thermolysis of Bicyclo[2.2.0]hex-2-ene 

Sir: 
The cyclodissociation of bicyclo[2.2.0]hex-2-ene1 (2ab, 

Figure 1) bridges two long studied series of similar reactions. 
Common to both is a problem still unresolved in any general 
way. How does molecular strain enhance reactivity when a 
"least-motion" mechanism is symmetry-forbidden? 

Bicyclo[2.2.0]hexane (lb) employs its strain to select a 
symmetry-allowed but otherwise unanticipated (a2s + a2&) 
path to hexa-l,5-diene.2 Dewar benzene (3b), at least in part, 
crosses over to the benzene triplet surface.3 Bicyclo[4.2.0] 
oct-7-ene (4a) is believed to choose a sequence of two sym­
metry-allowed steps—conrotatory ring opening to the cis-trans 
diene and then 1,5-hydrogen shift—to provide the isomeric 
cis-cis diene.4-5 The more thoroughly investigated cyclodis­
sociation of la to cyclopentadiene6 remains mechanistically 
the most obscure.7 

Our approach, as elsewhere,28 has been to generate a 
complete list of mechanistic alternatives, both "plausible" and 
otherwise. Then, through experiment, as many as possible are 
rigorously excluded. 

In this case, product analysis (>97% cyclohexa-l,3-diene, 
uncontaminated by 1H NMR- or GC-detectable impurities) 
and homogeneous first-order kinetic data (Table I)9 rigorously 

n> 
Ia 

26 2 
4.2 

CX] CD CD 
Ib 2ab 3b 

36.0 23.0 
1.8 -5 .0 

CO 
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44.4 
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CO 
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Figure 1. Hitherto available thermolysis AH* and AS* data. 
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Table I. Gas Phase (240-420 Torr) Kinetic Data 

Temp, ° C 

102.5 
110.9<-
123.4 
137.4 
151.6' 
AH* d 

AS*''' 
E," 

Ad 

105/c" 

.417 ±0.006 
1.06 ±0.06 
3.89 ±0.18 

20.5 ± 1.0 
72.8 ±2.5 
32.15 ±0.09 

2.4 ± 0.2 
32.95 ± 0.09 

(7.4 ±0.8) X 1013 

R factor* 

0.011 
0.032 
0.019 
0.038 
0.018 

0.071 

0.071 

" Uncertainties are standard deviations. * W. C. Hamilton, "Sta­
tistics in Physical Science", Ronald Press, New York, N.Y., 1964, p 
157. c Insensitive to a sixfold increase in surface area. d Each set 
derives from concurrent nonlinear least-squares fitting of integrated 
GC area ratios obtained at all temperatures between 3 and 87% re­
action. 

excluded many CeHs isomers as potential transient interme­
diates. Some are already known to provide other products (e.g., 
A''4-bicyclo[2.2.0]hexene10) and/or to react too slowly at these 
temperatures (e.g., //•an.s-hexa-l,3,5-triene,11 cyclohexa-
1,4-diene,12 bicyclo[2.1.1]-13 or bicyclo[3.1.0]hex-2-enes,14 

tricyclo[3.1.0.02,6]-15 or a«f/-tricyclo[3.1.0.02'4]hexanes16). 
Still others (e.g., 2-vinylbicyclo[1.1.0]butane, tri-
cyclo[2.2.0.02,6]hexane) may reasonably be presumed to fall 
into one or another of these two categories.25 A particular ef­
fort was made to guarantee the absence (<1%) of cj's-hexa-
1,3,5-triene, both in residual reactant and in initial product. 
Otherwise, the reported rate of its transformation to cyclo-
hexa-l,3-diene (105A: = 0.22, 25.6 at 100°, 15O0)17 would 
strongly have implicated mechanism 1. 

CO ~ C^ - O "' 
Next, cyclohexa-l,3-diene-^2, obtained from the 5-exo,6-

exo-^2 substrate 5, was oxidized to meso-dideuteriosuccinic 
acid of >95% isotopic and diastereomeric purity. In this way, 
the absence of the (^ 3 + ff2s) - (X2S + „4S) variant of eq 1 is 

Af -Cf- $ 
5 H H 6' H 

confirmed. More generally excluded is any mechanism that 
might violate the stereochemical integrity of the two adjacent 
methylene groups. Among these, eq 2 is analogous to the (more 
difficult) transformation of bicyclo[2.1.0]pentane to cyclo-

H 

pentene.'8 Finally, the absence of > 1.3% of 6 or of >0.2% of 
7 in residual reactant requires that neither eq 3 nor 4 effectively 
compete with cyclodissociation.19 

H 

6 
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